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The utility of organotin hydrides, which have dominated the
synthetic radical chemistry scene for the past two or three
decades,1 has been significantly increased by the development
of allylstannanes and other related tin derivatives. These allow
a functional group to be introduced in the last propagation step
instead of the usual hydrogen atom transfer.2 However, the
toxicity of organotin residues as well as the perennial purifica-
tion problems commonly encountered with stannane derivatives3

has generally precluded large-scale application of stannane-based
methodology. We now describe a new allylation process which
does not involve heavy metals and which can lead to a number
of interesting synthetic transformations.
Our approach relies on the fact that sulfonyl radicals add

reversibly to olefins and the little-appreciated observation that
alkyl radicals can react in a reversible manner with sulfur
dioxide.4 In general, the equilibrium favors the alkylsulfonyl
radical, but if the alkyl group represents a stabilized radical (e.g.,
a benzyl), then extrusion of sulfur dioxide occurs readily.5

Practically all the synthetic applications of sulfonyl radicals have
involvedarylsulfonylswhich do not undergoR-scission,6 so that
this aspect of their chemistry has on the whole been overlooked
in the past.4c
With these considerations in mind, we contrived a system

where a succession of reversible or degenerate steps force the
process in the desired direction, even in cases where the
extrusion of sulfur dioxide from the alkylsulfonyl radical is not
particularly favored. Our conception is outlined in the reaction
manifold displayed in Scheme 1. Addition of a radical to the

terminal olefin of alkyl allyl sulfone1 generates an alkylsulfonyl
radical2 (path A) which can only react in a redundant manner
with its precursor1 (path B). The only way for the system to
evolve is by extrusion of sulfur dioxide (path C) to give alkyl
radical R•, which can now propagate the chain by addition to1
to give the desired product37 via path A. This scheme is still
flawed, because the product3 can also serve as substrate for
radical additions. As3 accumulates in the medium, it competes
for radical R• (path D) to give adduct4 and so on, bringing the
system out of control. Since the product3 is expected to have
a reactivity similar to that of the starting allyl sulfone1, one
solution would be to operate at low conversion, a very serious
limitation from a synthetic standpoint. To avoid such an
untoward situation, we envisaged the possibility of adding a
relay allylating reagent to overwhelm unwanted path D. In
principle, this could be accomplished by adding an excess of
anaryl allyl sulfone5. This second allyl transfer reagent, by
a sheer concentration effect, will continuously scavenge R• (path
E) to provide the same product3 and an arylsulfonyl radical6
which cannot loose a sulfur dioxide molecule. The only
alternative then is a reversible reaction (path F) with the first
allyl sulfone 1 thus regenerating the relay sulfone5 and
producing alkylsulfonyl radical2 to propagate the chain. Under
such conditions, the formation of the desired product3 will
therefore occur principally through path E rather than path A
and formation of side products by route D will be largely
circumvented.
The following examples demonstrate the validity of the above

analysis. Upon heating, a solution of1a-d with a 5-fold excess
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of allyl tolyl sulfone5 (Ar ) p-tolyl) in degassed cyclohexane8

in the presence of a small amount of AIBN (or, sometimes
better, in chlorobenzene using di-tert-butyl peroxide as initiator
as in the case of3a,b) afforded the expected allyl derivatives
3a-d in fair to good yields. The carbohydrate and nucleoside
examples3cand3d are noteworthy in illustrating the applicabil-
ity of the process to complex structures. Moreover, in examples
3b-d, the secondary carbon radical formed by extrusion of
sulfur dioxide is not particularly stabilized.

The reaction manifold pictured in Scheme 1 can be further
expanded to include an addition to an electrophilic olefin7,
which captures the (normally nucleophilic) carbon radical R•

faster than the allyl group. Overall, this modification leads to
derivatives8 as outlined in the greatly simplified Scheme 2.
Examples8a-i illustrate some of the synthetic possibilities,
using three representative electron-poor olefins,7a-c. Since
the starting allyl sulfones in these cases are inexpensive, they
can be used in excess (5-6-fold) and there is no need to add
relay sulfone5. Two new carbon-carbon bonds are created
in the process, and even two allyl9 or a propargyl and an allyl
group (albeit in modest yield) can be introduced across the
electrophilic olefin (examples8f-h). Clean intermolecular
additions of the rather unreactive propargyl (and even allyl)
radicals are practically unknown,10 and the products obtained
in the present study are potential substrates for various
exceptionally useful transition metal based transformations (e.g.,
alkene metatheses; the Pauson-Khand reaction; etc.).11 Finally,
the allyl group being transferred can be substituted in the
2-position, for example with a chlorine atom as in compound
8i (in this case the experiment was performed in 1,2-dichloro-
ethane for solubility reasons).
None of the reported yields has been optimized in this

preliminary work. We have found for example that, for3aand
3b, a similar yield (60% and 87%, respectively) was obtained
with only 3 equiv of relay sulfone5. The yield of8b (61%)
was also comparable when 3 instead of 6 equiv of1ewas used,
but in the case of8d it decreased to 34%. The reactions are in
many cases nearly complete after the first few percent (5-7%)
of initiator has been added; however, as the concentration of
the limiting substrate dwindles, the radical chains become
relatively short and a further, disproportionate amount of initiator
is needed to push the reaction fully to completion.
In summary, this new radical allylation process is simple and

flexible and employs readily available starting materials, yet it
allows not only the introduction of the highly useful allyl group
but also the expedient assembly of complex frameworks.
Various modifications and extensions are currently under study.
Supporting Information Available: References to standard meth-
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see any current masthead page for ordering information and Internet
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